

Making Muscadine Wine at Home (Advanced)

by

Chuck Blethen, Owner, Jewel of the Blue Ridge Vineyard, and VP Public Relations, French Broad Vignerons Chuck@JeweloftheBlueRidge.com

with winemaking tips from

Alan Staton, VP Education, French Broad Vignerons
& Board Member, North Carolina Muscadine Grape Association
August 21, 2021

Outline of this class

Legal stuff

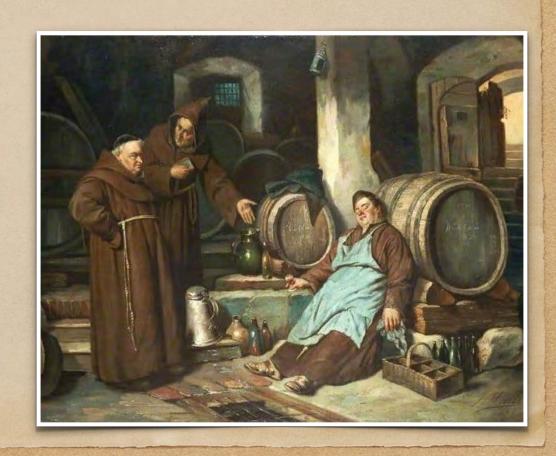
Supplies needed for better winemaking

Some testing equipment you need

Some useful charts/tables

A few useful equations

Recipe for making good Muscaine wine at home


How wine judges evaluate your wine

Useful references

Why are you sitting in on this class?

- O To kill a morning
- O I'm seeking a cheap buzz
- O I'm frugal \$1.50 per bottle
- O Curiosity / interest in winemaking
- O To have fun!

Winemaking Philosophy

Where I stand on winemaking at home.

There are two basic positions that make sense in home winemaking.

- 1 To make wine as cheaply and simply as possible without wasting time and effort just getting by with basic table wine also known as plonk!
- 2 To make wine involving a commitment to quality bordering on the obsessive that requires a body of knowledge at a level nearing that of commercial vintners. I follow this position.

It is a lot easier to get novices started off on the right foot than to change 30year-old bad habits of veterans.

In this class you will learn:

- a little math...
- a little physics...
- a little chemistry...
- a little zymology...
- a little bacteriology...
- a little practical lab skills...

somewhat like cooking...

But a lot more fun!

Just chill out and take good notes – winemaking is not hard!

Legal Stuff...

How much wine can I legally make?

Note: You can make alcohol, but you can't concentrate it!

The U.S. Law Concerning Alcohol Production

The aggregate amount of wine that may be produced exempt from tax with respect to any household may not exceed:

- (1) 200 gallons per calendar year for a household in which two or more adults reside, or
- (2) 100 gallons per calendar year if there is only one adult residing in the household.

What factors impact the quality of wine made at home?

Quality of your must or juice source

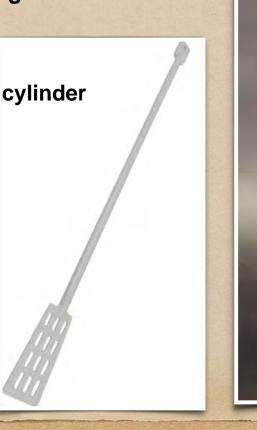
Sanitation level

Ability to test/taste your wine

Ability make necessary adjustments of acidity, sweetness, residual sulpfite, etc.

Your winemaking skills

Winemaking supply kits



Food grade plastic tubing
Stirring rods
24" stirring paddle
250 ml graduated glass cylinder

Airlocks

Food grade plastic buckets
Glass carboys - 1, 2, 3, 5 or 6.5 gallons
Motorized transfer pump (optional)
Measuring spoons and cups

RO or distilled water (install under-sink or buy bottled)
Bottle drying racks

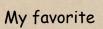
- ...

Bottling cane

Funnels

Wine bottles (new or recycled)
Wine bottle labels (make your own)
Paper towels
Stiff paper
Hanging tags

Corks
Buy the best quality you can get
Only the glass bottle and the cork are protecting your wine

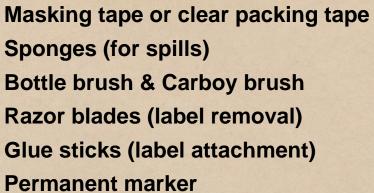

Capsules

Heat Shrink Capsule Tool

Manual (Dip in boiling water for 3 seconds

Hair dryer/heat gun

Small electric heat shrink machine



Yeasts – Dry versus Liquid

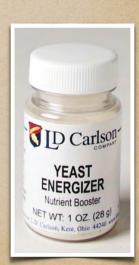
Toasted oak chips (or oak powder) – adds oak flavor to wine

Campden Tablets (KMS) – kills rogue yeasts in the must

Tannin Plus – gives your wine a tannin kick


Dextrose or Simple sugar – to chaptelize low sugar musts

Yeast Energizers/Nutrients



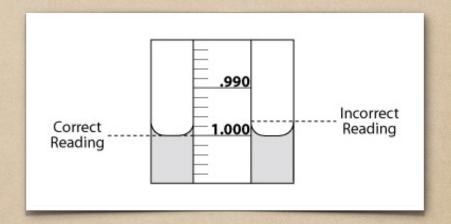
Corking Machines

Floor/Table Top Corking Machine

Supplies

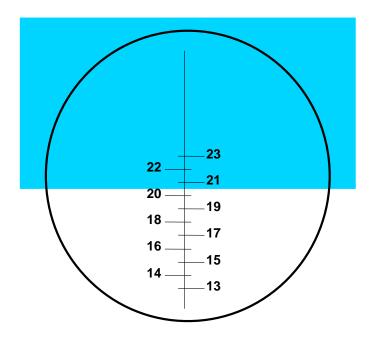
Supplies Testing Equipment

Mercury (silver) or alcohol (red) column thermometer

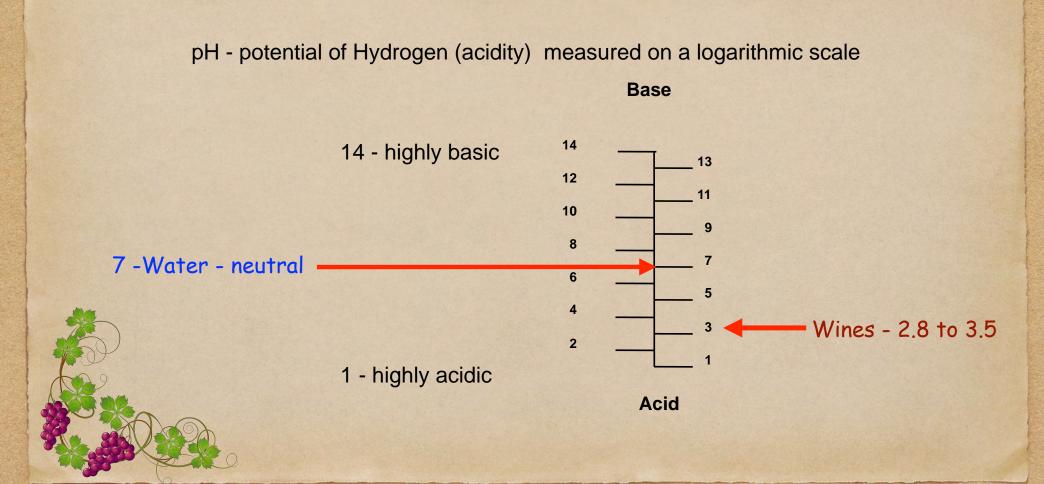


Digital thermometer

Supplies Testing Equipment


Hydrometer

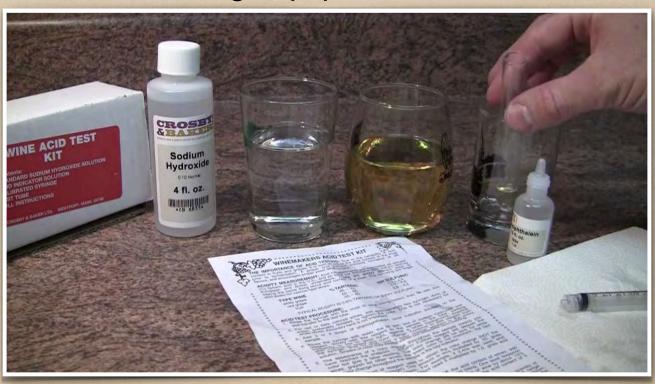
Specific Gravity *	Brix (Balling) % Sugar	% Potential Alcohol (Baume)
1.059	14.4	8.0
1.063	15.4	8.5
1.066	16.2	9.0
1.071	17.1	9.5
1.075	18.0	10.0
1.079	19.0	10.5
1.083	20.0	11.0
1.087	20.8	11.5
1.091	21.7	12.0
1.095	22.5	12.5
1.099	23.5	13.0
1.103	24.3	13.5
1.108	25.4	14.
1.112	26.3	14
1.116	27.1	15.0


^{*}Make temperature corrections for Hydrometer readings

What is pH?

Testing Equipment

Portable pH Meters

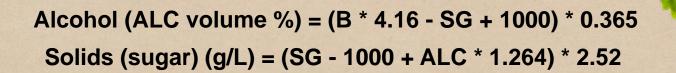


Testing Equipment

Total Acidity (TA) Test Kit - follow directions

Deficiencies in acid can be corrected by adding Tartaric acid, or an Acid Blend

Minimum TA for wines is 6 to 8 g/L for red wines


Optimum being 6.5 to 8.5 g/L for white wines

Total Acidity (TA)	To obtain 6 g/L add to each gallon	To obtain 8 g/L add to each gallon
(g/L*)	(g) - oz	(g) - oz
3.0	11.3 0.39	18.9 0.66
3.5	9.4 0.33	17.0 0.60
4.0	7.5 0.26	15.2 0.53
4.5	5.6 0.19	13.2 0.46
5.0	3.8 0.13	11.4 0.40
5.5	1.9 0.66	9.5 0.33
6.0		7.5 0.26
6.5		5.6 0.19
7.0		3.8 0.13
7.5		1.9 0.66

* Titratable acid as tartaric acid

Where SG is in 3 or 4 digits, B is the Brix reading.

Must solids mostly sugar, but also acids, other minor solid components in wine In sweet wines, nearly all solids assumed to be sugar

Measurement accuracy affected by temperature. Essential to stabilize at same temperature, preferably in 59 - 64.5 Fahrenheit range

Clean & sanitize EVERYTHING – bottles, glasses, corks, tubing, caps, stirrers, carboys, hands – anything that may come in contact with the wine

One Step™(cleaner & sanitizer)

One the per gallon of warm water

25 minutes soak

Supplies for Cleaning/Sanitizing

KMS (Potassium Metabisulphite sanitizer only – you still need a cleaner)

Two oz./ gallon of water

20 second soak Works great in a spray bottle too!

lodophor™ (sanitizer only – you still need a cleaner)
Two caps/5 gallons

60 second soak

Grapes

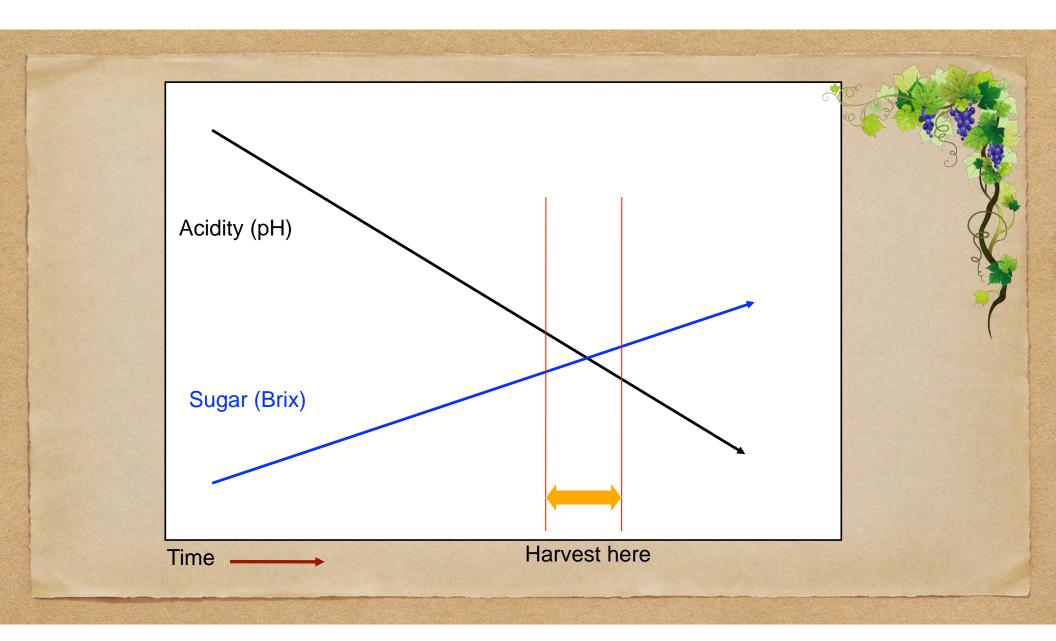
Grape Crusher

Wine Press

Press bag

Carboy carrier strap

Supplies


5.3 gallon bucket of water = 44.2 pounds5.3 gallon bucket of juice weighs 47.5 pounds

Carboy handle

Carboy dolly

Weight of Grapes Depends upon Variety

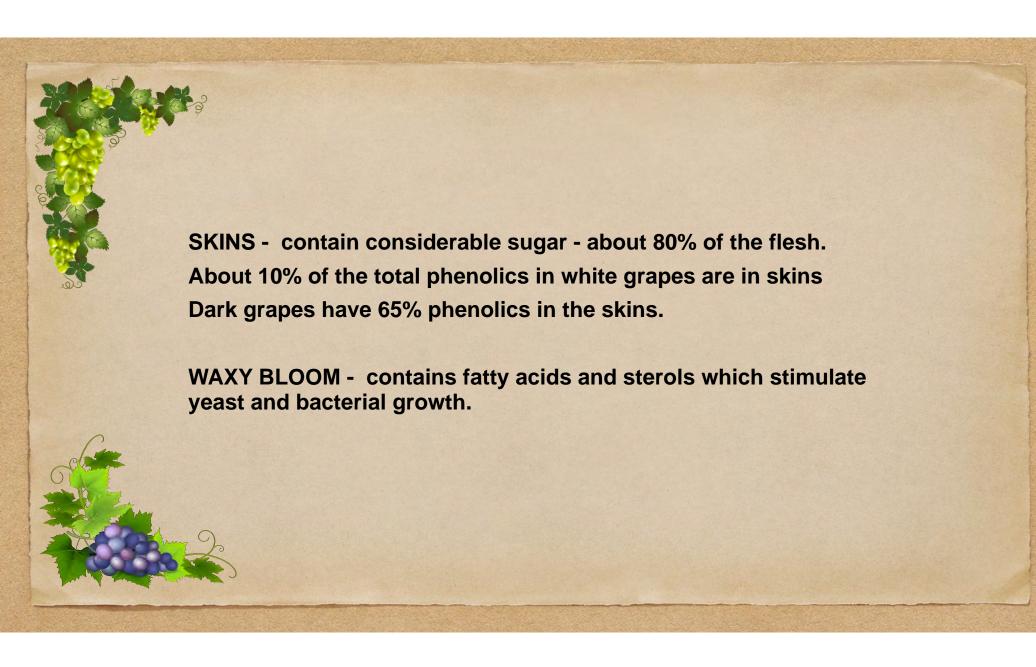
Stems - 2 to 8%

Skin - 5 to 20%

Flesh - 74 to 90%

Seeds - 0 to 6%

1 ton of vinifera yields ~ 150 gallons of juice 1 ton of muscadine grapes yields ~ 125 gallons of juice STALK & STEMS - (pedunkles and pedicels) have pH between 4 and 5


High in potassium

Sugar content less than 1%

Polyphenols - (leucoanthocyanins & catechins which have a harsh astringent taste) make up 0.5 to 3.5% by weight

Makes up to 20% of tannin in harvested grapes

SEEDS - contain up to 50% similar tannins Seeds contain bitter grape oils

Muscadine grape must - 15 to 17 Brix (1.060-1.070 SG)

Musts falling short of these values can be corrected using several methods:

Back sweeten

Adding sugars

How much sugar to add to your juice to make potential alcohol higher

$$S = W \times B-A (100 - B)$$

S = weight in pounds of sugar to be added to the must
W = weight in pounds of the grape must (SG x weight of water equivalent - 8#/gal)
B = desired Brix

A = original Brix of grape must

For example, if you want to raise the Brix of 10 pounds of must or juice from 15 to 23 calculate as follows:

$$S = 10 \times 23 - 15 = 1.04 \text{ pounds}$$

(100 - 23)

Some common clarifiers used by home winemakers:

Time +/-

Refrigeration +/-

Super-Kleer (Kieselsol/Chitosan (shellfish)) + -

Activated Carbon

Crushed egg shells

Diatomaceous earth

Polyvinylpyrrolidone (PVP)

Polyclar

Milk (2-3 drops per gallon)

Egg albumen (egg whites) +

Gelatin +

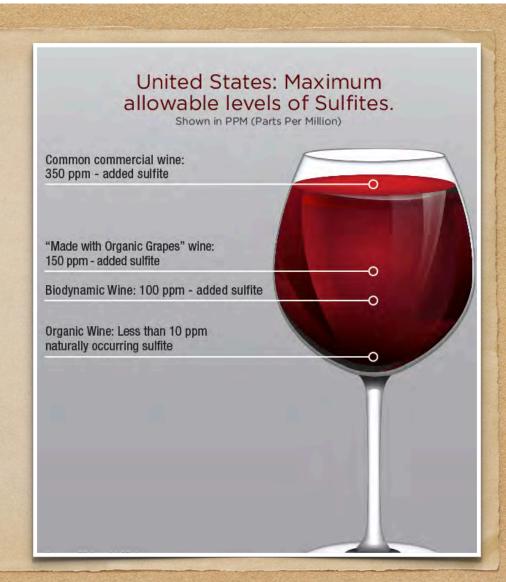
Isinglass (fish scales) +

Casein and caseinates +

Chitosan (chitin) +

Sparkolloid +

Enolophin / Kieselsol -


Bentonite clay -

Sulfites

There are six names used for sulfites:
 sulfur dioxide
 sodium sulfite
 sodium bisulfite
 potassium bisulfite
 sodium metabisulfite
 potassium metabisulfite

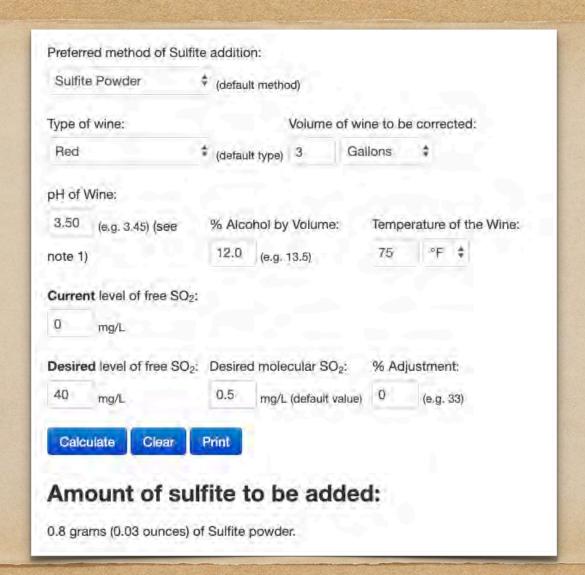
Sulfites, bisulfites, and metabisulfites are all dry chemical forms of the gas, sulfur dioxide.

DISTRIBUTION OF FREE SO2

From pH 3.0 - 4.0 (pKa = 1.81)

Sulfite
addition
after
fermentation
and before
bottling

рН	% Molecular % Bisulfite % Sulfit			Minimum ppm of Free SO ₂			
pn	SO ₂ (m)	(HSO ₃ -)	(SO ₃ =)		0.5 molecular		
3.00	6.1	93.9	0.012	13	8	5	
3.05	5.3			15	9	6	
3.10	4.9	95.1	0.015	16	10	6	
3.15	4.3	A STATE OF THE STA		19	12	7	
3.20	3.9	96.1	0.019	21	13	8	
3.25	3.4	342-45348 2 4	C 46.635.001	23	15	9	
3.30	3.1	96.8	0.024	26	16	10	
3.35	2.7	24.00	- Strenger	29	18	11	
3.40	2.5	97.5	0.030	32	20	12	
3.45	2.2	- copyright of		37	23	14	
3.50	2.0	98.0	0.038	40	25	15	
3.55	1.8			46	29	17	
3.60	1.6	98.4	0.048	50	31	19	
3.65	1.4		10.146-113	57	36	21	
3.70	1.3	98.7	0.061	63	39	23	
3.75	1.1			72	45	27	
3.80	1.0	98.9	0.077	79	49	30	
3.85	0.9			91	57	33	
3.90	0.8	99.1	0.097	99	62	38	
3.95	0.7	THE SECTION AND ADDRESS OF THE PARTY OF THE	100000000	114	71	43	
4.00	0.7	99.2	0.122	125	78	43	


This table shows the percent of molecular SO_2 present in the pH range from 3.0 to 4.0. Multiplying this percent by the free SO_2 will give the ppm (mg/L) of molecular SO_2 . To attain a desired level of molecular SO_2 , the amount of free SO_2 needed can be determined by dividing the desired molecular (mg/l) by the percent available at the given pH. For example, if the wine pH is 3.5 and the desired molecular level is 0.8 mg/L, then the needed amount of free SO_2 would be calculated 0.8/0.02 = 40ppm free SO_2 .

Free SO	2 levels re	quired to	maintain a molecular level
PH	.6mg/L	.8mg/L	
3.1	12	16	
3.2	15	20	
3.3	19	26	
3.4	24	32	
3.5	30	40	

SO2 Additions with Powder

PPM	Liter		Gallon		3 gallon	i in	5 gallon	
12	0.021	grams	0	grams	1/16	tsp	1/16	tsp
13	0.023	grams	0	grams	1/16	tsp	1/16	tsp
14	0.024	grams	0	grams	1/16	tsp	1/16	tsp
15	0.026	grams	0	grams	1/16	tsp	1/16	tsp
16	0.028	grams	0	grams	1/16	tsp	1/16	tsp
17	0.030	grams	0	grams	1/16	tsp	1/16	tsp
18	0.031	grams	0	grams	1/16	tsp	1/8	tsp
19	0.033	grams	0	grams	1/16	tsp	1/8	tsp
20	0.035	grams	0	grams	1/16	tsp	1/8	tsp
21	0.036	grams	0	grams	1/16	tsp	1/8	tsp
22	0.038	grams	0	grams	1/16	tsp	1/8	tsp
23	0.040	grams	0	grams	1/16	tsp	1/8	tsp
24	0.042	grams	0	grams	1/16	tsp	1/8	tsp
25	0.043	grams	0	grams	1/16	tsp	1/8	tsp
26	0.045	grams	0	grams	1/16	tsp	1/8	tsp
27	0.047	grams	0	grams	1/16	tsp	1/8	tsp
28	0.049	grams	0	grams	1/16	tsp	1/8	tsp
29	0.050	grams	0	grams	1/16	tsp	1/8	tsp
30	0.052	grams	0	grams	1/8	tsp	1/8	tsp
31	0.054	grams	0	grams	1/8	tsp	1/8	tsp
32	0.056	grams	0	grams	1/8	tsp	1/8	tsp
33	0.057	grams	0	grams	1/8	tsp	1/8	tsp
34	0.059	grams	0	grams	1/8	tsp	1/8	tsp
35	0.061	grams	0	grams	1/8	tsp	1/8	tsp
36	0.063	grams	0	grams	1/8	tsp	1/4	tsp
37	0.064	grams	0	grams	1/8	tsp	1/4	tsp
38	0.066	grams	0	grams	1/8	tsp	1/4	tsp
39	0.068	grams	1/16	grams	1/8	tsp	1/4	tsp
40	0.069	grams	1/16	grams	1/8	tsp	1/4	tsp
41	0.071	grams	1/16	grams	1/8	tsp	1/4	tsp
42	0.073	grams	1/16	grams	1/8	tsp	1/4	tsp
43	0.075	grams	1/16	grams	1/8	tsp	1/4	tsp
44	0.076	grams	1/16	grams	1/8	tsp	1/4	tsp
45	0.078	grams	1/16	grams	1/8	tsp	1/4	tsp
46	0.080	grams	1/16	grams	1/8	tsp	1/4	tsp
47	0.082	grams	1/16	grams	1/8	tsp	1/4	tsp
48	0.083	grams	1/16	grams	1/8	tsp	1/4	tsp
49	0.085	grams	1/16	grams	1/8	tsp	1/4	tsp
50	0.087	grams	1/16	grams	1/8	tsp	1/4	tsp

On-Line
Sulfite
Calculator

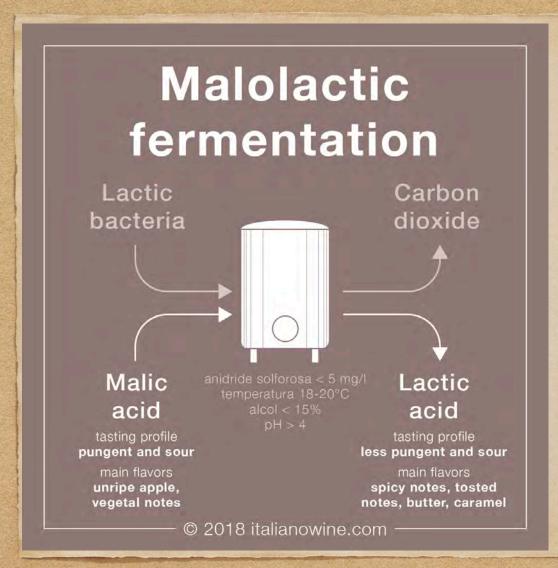
Racking (siphoning) is a necessary skill to develop if you are making wine at home.

There are several ways to rack

There are several ways to rack wine from one container to another.

Supplies

Pouring (not recommended)
Siphon by mouth with food grade tubing (careful!)
Small motorized pump
Hand squeeze pump
The Auto-Siphon (best method for home winemakers)



Supplies

There is a phenomenon called malolactic fermentation that can make your wine taste better

BUT

can also cause problems, like bottles exploding

Supplies

You may want to consider filtering before bottling if your wine has not cleared. But keep in mind that filtering also takes out many of the taste elements.

Manual

Electric

Let's Make Some Wine!

Assemble your equipment, grape juice, and supplies

Add Campden to must in a Primary Fermenting Bucket for 24 hours

Pitch the yeast (it is now wine)

Press down the cap hourly if using grapes/fruit

1st racking off skins/seeds/pulp when wine reaches 10.5% alcohol

Use air locks to prevent oxidation and growth of rogue yeasts & bacteria

4-6 hours for Muscadine

Add clarifiers after 6 months if needed

Keep air locks filled with sterile water (lodophor or KMS mixture)

Bottle wine after 6 months for Muscadine

Preservatives

Sulphur Dioxide

- a) Potassium Metabisulphate Campden tablets 1 tablet = 75ppm/gallon
- b) Very pH dependent, lower pH requires less SO2
- c) 40 ppm free SO2 ususally sufficient unless pH is greater than 3.4
- d) Dry wines (pH less than 3.4 & alcohol greater then 12%) relatively stable, less dependent on SO2
- e) Taste threshhold for SO2 for most people is ~70ppm

Preservatives

Sorbic Acid

- a) Potassium sorbate
- b) NOT active against bacteria in wine; effective against yeast and mold growth
- c) Must be used with proper amount of SO2
- d) Use in wines with more then 0.5% residual sugar at bottling to prevent refermentation
- e) Activity is dependent upon alcohol level Higher the alcohol, the less sorbic acid needed,
- f) 200 ppm usual treatment 1 gram potassium sorbate/gallon = 200ppm
- g) Flavor not affected in sweet, fruity wines
- h) Always add 502 before adding sorbic acid

Sorbate addition is dependent upon several interdependent criteria:

Wine pH;

Concentration of free SO2;

Percent alcohol by volume;

Concentration of sorbate; and,

Viable yeast cell concentration.

POTASSIUM SORBATE (Cont'd)

Assuming that proper levels of free SO2 are maintained and the pH's are within the desired ranges, sorbate additions can be determined by the estimated alcohol of the wine. The following table is based upon the percentage of alcohol in the wine:

% A	Icohol	Sorbate	Addition
	10	0.20 g/l	0.026 oz/gal
	11	0.17 g/l	0.022 oz/gal
	12	0.135 g/l	0.012 oz/gal
	13	0.10 g/l	0.013 oz/gal
	14	0.07 g/l	0.009 oz/gal

Amount of sorbate required decreases as the alcohol level increases because:

- 1) At the lower alcohol levels, there may be a greater volume of viable yeast cells; and
- 2) Higher alcohols have an inhibiting effect on refermentation. 200 ppm usual treatment 1 gram potassium sorbate/gallon = 200ppm

Do not use sorbate in any wine that has undergone MLF because the resultant unpleasant odor will be geraniol, a geranium-like smell.

Muscadine Home Winemaking Equipment & Supplies

Equipment needed:

- Primary Fermenter. A 6-8 gallon bucket with a lid would be preferable food grade plastic
- Secondary Fermenter. A 5 gallon narrow-necked carboy, preferably glass
- · Airlock. To allow carbon dioxide gas to escape and keep out air. Fill and keep full with sterilizing agent
- Siphon. 6 feet of food grade plastic tubing or Auto-Siphon
- Small crusher. to break the skins of the grapes
- Strainer. Either cheese cloth or a nylon bag (or small wine press)

Supplies:

- Wine Yeast One packet of EC-1118 or Lalvin RC 212 (Scott Labs W15 works well too)
- Campden tablets This kills off wild bacteria and yeast found on the fruit skins; acts as preservative in bottles
- Grapes 90 pounds to yield 5 gallons of wine
- · Yeast Nutrient Lallemand Fermaid O works best.
- Simple Sugar* Turbinado sugar works the best for home winemaking (boil water and sugar, then cool before using)
- · Non-chlorinated water

*Simple Sugar is turbinado sugar mixture 1:1 with water that has been boiled and cooled

Muscadine Wine Recipe - (5 Gallons)

Pick or buy your grapes. Ripe Muscadine grapes have a sugar level of about 14-16 Brix.

Directions:

- 1 For white muscadines immediately crush & press the grapes to remove the grape skins, pulp and seeds and pour juice into a carboy. Measure the Brix to determine how much sugar to add to bring the potential alcohol up to 10-11%. Next, slowly stir simple sugar* into the must making sure hydrometer reading does not go higher than 1.085 (20 Brix). Multiply the Brix reading by 0.57 to get potential alcohol. If you have an acid test kit at home, test your wine and adjust it accordingly at this point. You need a Total Acidity (TA) of about .60 to .80. Add tartaric acid if TA too low, and potassium bicarbonate if TA is too high. Mix yeast nutrient with 1-2 packets of wine yeast in a cup of warm water and add to must. Primary fermentation will begin. Seal/cover fermenter.
- 2. For red muscadines, crush the grapes into a primary bucket and cover. Wait for 4-6 hours, before pressing the grapes to remove the grape skins, pulp and seeds. Then slowly stir simple sugar into the must making sure hydrometer reading does not go higher than hydrometer 1.085 (20 Brix)... If you have an acid test kit at home, test your wine and adjust it accordingly at this point. You need a Total Acidity (TA) of about .60 to .80. Add tartaric acid if TA too low, and potassium bicarbonate if TA is too high. Mix well... Mix yeast nutrient with 1-2 packets of wine yeast in a cup of warm water (~ 110F) and add to must. Primary fermentation will begin. Pour juice into a carboy and seal with an airlock.
- 3. Let the wine ferment/age for 6 months.
- 4. Make a final check of the TA and taste test. Make any sweetness/acidity adjustments prior to bottling.
- 5. Dissolve 1 crushed Campden tablet in a small cup of water for each gallon of wine and add to carboy
- 6. Bottle and cork Ready to drink now but tastes better if you can wait about 6 months.

You Have Made Some Good Wine...

Want to enter it in an Amateur Wine Competition?

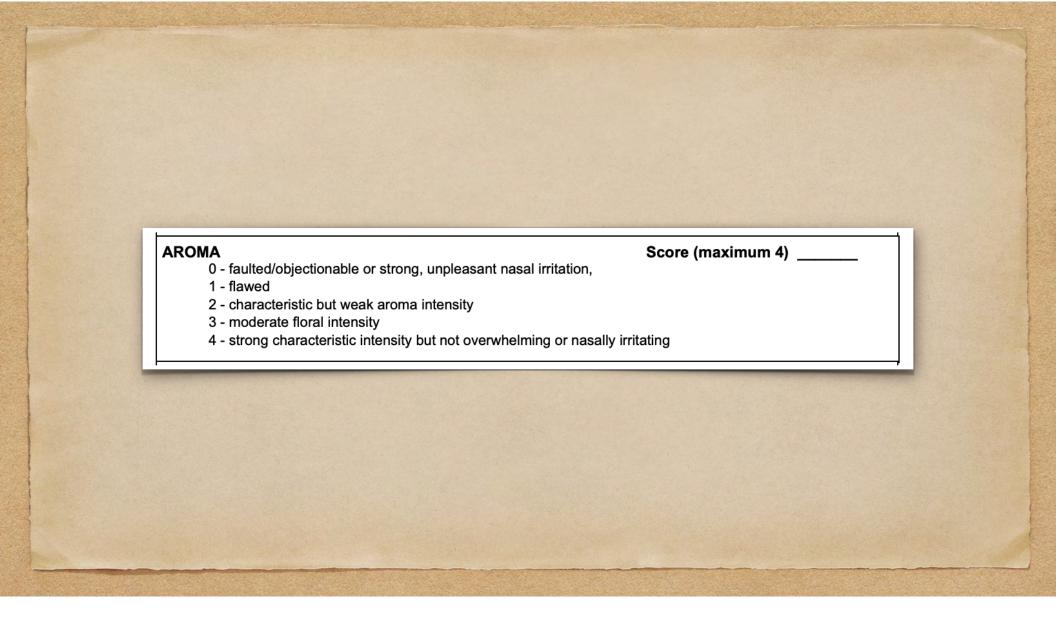
This is how it will be judged

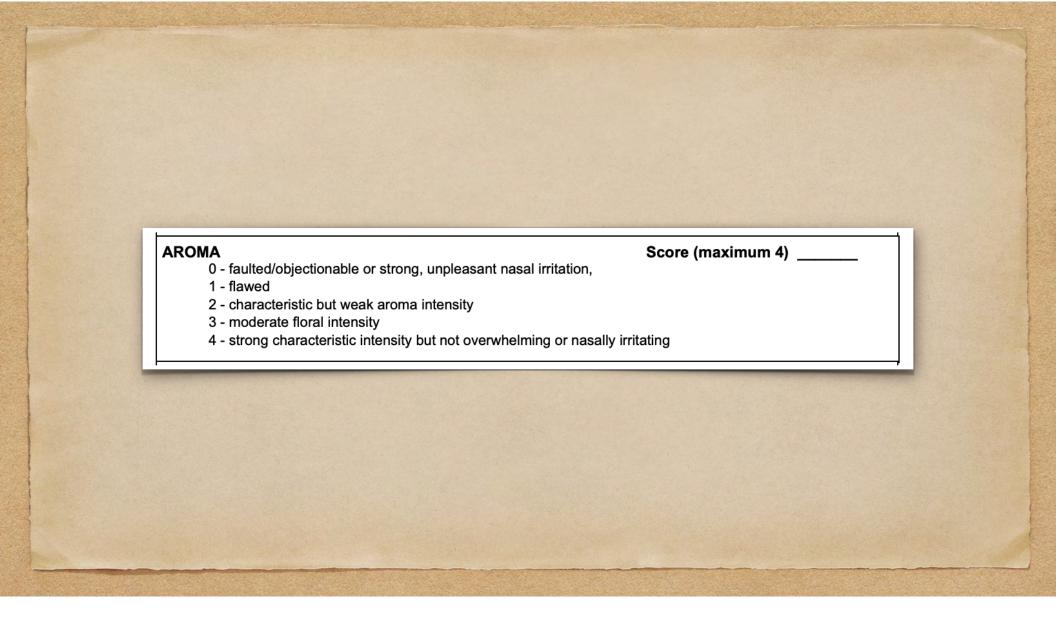
Wine Judges Tasting Chart for Muscadine & Fruit Wines (rev13Mar29-21)

TA:	grams/liter	pH:	Residual Sugar	grams/liter
SIGHT			Score	(maximum 3)
0 - cloudy				
 browning or other 				
2 - clear but particula				
3 - clear, brilliant, ref	lective with cha	racteristic co	olor	
AROMA				re (maximum 5)
0 - very strong/object			by all	
1 - flaw recognizable		ot all		
2 - prominent nasal i				
3 - characteristic but		tensity		
4 - moderate floral in				
5 - strong characteris	stic intensity bu	t not overwh	elming or nasally irritating	
TASTE			Scor	re (maximum 7)
Acid level				
	acid is too low	or too high		
1 - medium a				
Sweetness for the				
	sugar level is t	oo low or too	o high	
1 - pleasant s	sugar level			
Tannin level				
	e excessively h			
	re at pleasant le	evel/mouthfe	el for style	
Alcohol level				
	vel is too hot or	too flabby		
1 - pleasant A	ABV level			
Body				
			gh for the floral/fruit taste	
	henols) quite ple	easant		
Balance				
			too low or too predominant	
			e, too high or too low	
2 - very well l	balanced taste	components		
FINISH/LENGTH:			Score	(maximum 2)
0 - bad taste on finish	1			
1 - pleasant taste but	short (<5 secon	nds)		
2 - pleasant taste lon				
OVERALL QUALITY			Score	e (maximum 3)
0 - undrinkable				
 acceptable quality 	y			
2 - very well made w	ine			
3 - outstanding, I'd b	uy			
			•	

Developed in collaboration with (among others) Dr. Rick Jelovsek whose certifications include: Certified Wine Specialist (CSW);
Certified Wine Educator (CWE);
French Wine Scholar (FWS);
American Wine Society certified Wine Judge for Commercial and Amateur Wine Competitions (CWJ).

Rick is also co-author of the book "Competition Wine Judging" (2019).


Several other international wine judges & winemakers made suggestions/contributions to this document


	Wine Judges Tastin	ng Chart fo	or Muscadine & Fruit Wines
Wine:			Vintage: Date
	TA:grams/liter	pH:	Residual Sugargrams/liter

SIGHT

- 0 cloudy
- 1 browning or other off-color
- 2 clear but particulate matter
- 3 clear, brilliant, reflective with characteristic color

Score (maximum 3)

TASTE

Score (maximum 7)

Acid level

- 0 perceived acid is too low or too high
- 1 medium acid level

Sweetness for the acidity level

- 0 perceived sugar level is too low or too high
- 1 pleasant sugar level

Tannin level

- 0 tannins are excessively high or bitter
- 1 tannins are at pleasant level/mouthfeel for style

Alcohol level

- 0 alcohol level is too hot or too flabby
- 1 pleasant ABV level

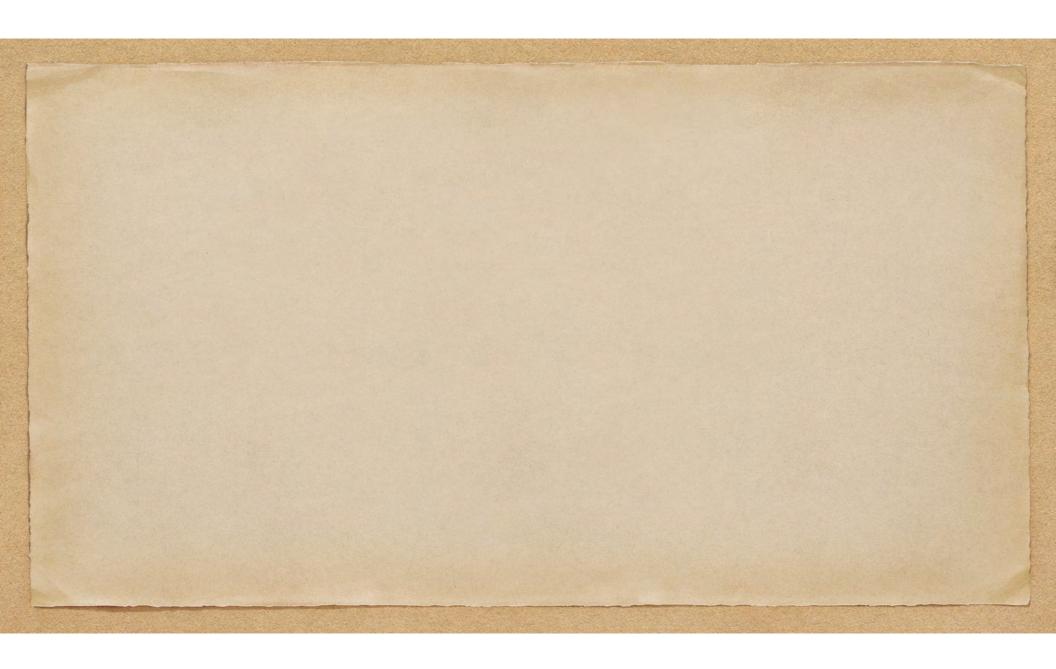
Body

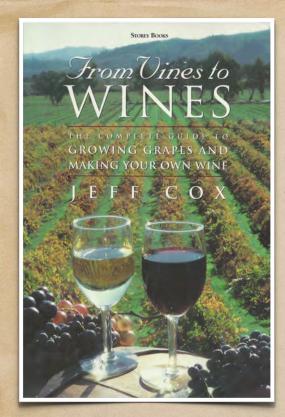
- 0 flavors (phenols) are too low or too high for the floral/fruit taste
- 1- flavors (phenols) quite pleasant

Balance

- 0 more than one taste components are too low or too predominant
- 1 1 taste component is out of balance, too high or too low
- 2 very well balanced taste components

FINISH/LENGTH: 0 - bad taste on finish 1 - pleasant taste but short (<5 seconds) 2 - pleasant taste, medium finish 3 - pleasant taste long finish (8-10 seconds)	Score (maximum 3)

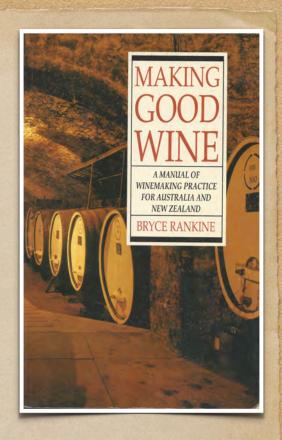

OVERALL QUALITY 0 - undrinkable 1 - acceptable quality 2 - very well made wine 3 - outstanding, I'd buy		Score (maximum 3)
SCORING	(Total score out of possible 20)	Total Score


Wine Judging Awards

Blue Ribbon wine 17.5-20 points;

Red Ribbon wine 15.0-17.49 points;

Yellow Ribbon wine 12.5-14.99 points



Bibliography & References

From Vines to Wines - Storey Books Publishing

Making Good Wine - Pan Macmillan Publishing

Local Winemaking Supply Sources

Asheville Brewers Supply

712 Merrimon Ave
Asheville NC 28804
(828) 285-0515
brewgeeks@ashevillebrewers.com
ashevillebrewers.com

Making Muscadine Wine at Home (Advanced)

Chuck Blethen chuck@JeweloftheBlueRidge.com

with winemaking tips from

Alan Staton, VP Education, French Broad Vignerons
& Board Member, North Carolina Muscadine Grape Association
August 21, 2021

Music: Chug-a-lug by Roger Miller